

SMPS Specification

LT100-24V

1.1 Input Characteristics

AC input voltage rating 220Vac

AC input voltage range 100Vac - 240Vac AC input frequency range 47Hz ~ 63Hz
Input current 0.84A Max.
Input Power 100W Max.
Power factor 0.5 Min
Efficiency 83% Min

1.2 Output Characteristics

Output Voltage 24.0V
Rated load current 3.5A
Peak load current 4.0A
Rated Output Power 84W
Min. load current 100mA
Output Tolerance ±5%

Ripple and Noise 1000mVp-p

1.3 Performance Specifications

Line Regulation $\pm 5\%$ Load Regulation $\pm 5\%$

1.4 Protection Features

Over Current Protection

Short Circuit Protection

Output shut down with auto-recovery

Over Voltage or Load Protection

Output shut down with auto-recovery

Over Temperature Protection

Output shut down with auto-recovery

Output shut down with auto-recovery

1.5 Environments

Operating Temperature $-20\,^{\circ}\text{C}$ to $+50\,^{\circ}\text{C}$ Storage Temperature $-30\,^{\circ}\text{C}$ to $+70\,^{\circ}\text{C}$ Operating Humidity 20% to 90% R.H. Storage Humidity 0% to 95% R.H.

1.6 Dielectric Withstand Voltage (Hi-Pot)

condition: non operating

Test Point: primary to secondary 3.0KVac, 10^{mA}, 3Sec

1.7 Insulation Resistance

condition: non operating

Test Point: primary to secondary Greater than 100™ at 500 VDC

2 Performance Evaluation

This session presents the test results of SMPS module up to data. Results on inrush current and safety test are not included and will be added when they become available. Overall, the module meets design specifications.

2.1 Input Characteristics

2.1. 1 Input current and Standby power

The module was tested at different input voltages (from 200Vac to 240Vac)

Standby power at min. load Input Voltage Pin (mW)	200Vac 1.52W	220Vac 1.62W	240Vac 1.67W
Input current at full load			
Input Voltage	200Vac	220Vac	240Vac
Input Current (A)	0.90A	0.84A	0.78A
Efficiency			
Input Voltage	200Vac	220Vac	240Vac
Input Power (W)	96.5W	96.3W	96.2W
Output Power (W)	84W	84W	84W
Power factor	0.53	0.51	0.50
Efficiency (%)	87%	87%	87%

2.2 Output Characteristics

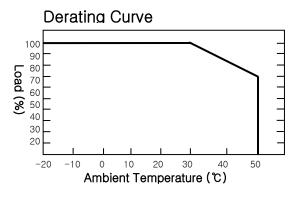
2.2.1 Line Regulation & Load Regulation

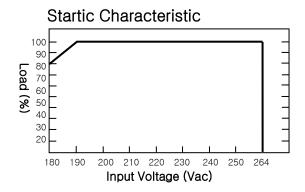
Input Voltage	Output Voltage (V)			
	Min Load	Nor. Load	Max Load	
200Vac	24.07V	_	23.90V	
220Vac	24.07V	_	23.90V	
240Vac	24.07V	_	23.90V	

2.2.2 Ripple & Noise

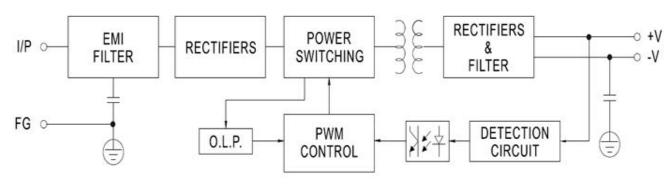
Ripple & Noise measure results

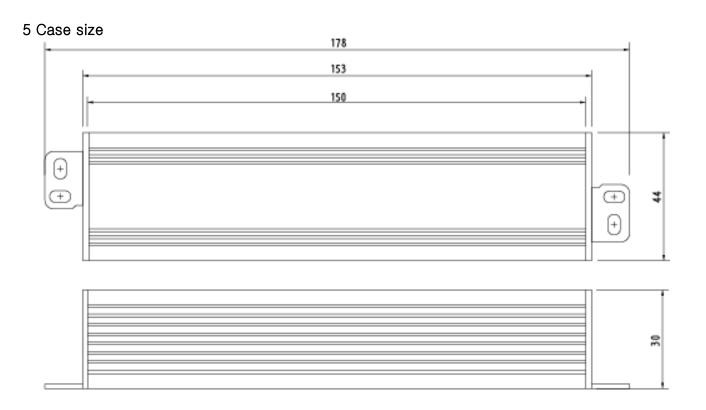
Input Voltage	Ripple & Noise (mV)		Remark
	Min Load	Max Load	
200Vac	_	300mV	
240Vac	_	300mV	


Note: Ripple & noise were measured at DC Cable end with a 0.1uF/50V ceramic cap connected in parallel with a 47uF/50V Electrolytic cap. Bandwidth was limited to 20MHz.


2.3 Protections

2.3.1 Over Current Protection (OCP)


The power supply will shut down auto-recovery when output current exceeds up load 100%, and it should recover when the over current condition is removed.


3 load Characteristic Curve

4 Block Diagram

